Topics

Navigation

Full Site Search

Loading...

The navigation select boxes below will direct you to the selected page when you hit enter.

Topical Explanations

Primary Legal Materials

Select by Subject

Select by Species

Select Administrative Topic


World Law

Secondary Legal Materials

Great Apes and the Law

Great Apes and the Law

Maps of State Laws

Map of USA

Quick Summary of Legal Issues Surrounding the Trade in Wild-Caught Reptiles
James M. Green (2005)


Photo courtesy of  Photos8.com

Wildlife smuggling is certainly on the rise.  The wildlife trade business is the second-largest illegal trade in the world after drugs.  The World Wildlife Fund states that the global trade, both legal and illegal, is estimated to be around US$159 billion per year in declared import values.  Reptiles play largely in the realm of exotic trade and illegal trade, but the reptiles that appear to be affected the most are the wild-caught reptiles. 

While a total ban may neither be feasible nor warranted, certainly the trade in wild-caught reptiles is too prevalent in our global economy.  Reptiles are animals.  Moreover, under most legal definitions, reptiles are considered to be animals as well.   Poor capture techniques, compounded by poor shipping methods or inadequate care, kill many reptiles before they reach the pet store.  An estimated 90% of wild-caught reptiles die in their first year of captivity because of physical trauma prior to purchase or because their owners cannot meet their complex dietary and habitat needs.  Reptiles are among the most inhumanely treated animals in the pet trade.  Because they are cheap and easily replaceable, dealers, captive breeders, and retailers factor huge mortality into their operating costs.  

The trade of wild-caught amphibians and reptiles is largely unregulated, with only a small minority of species monitored by an international convention.  Congress has enacted the Endangered Species Act (ESA) as an effort to help wildlife and the Lacey Act (a federal law that makes criminal the illegal trade in wildlife).  Concerns over public welfare have factored heavily into restrictions and ordinances enacted by states and localities.  Further, as situations become more problematic, the federal government has not been reluctant to intervene.  Reptiles and public safety can intersect in a variety of ways.  Reptiles can not only inflict harm or death themselves, but they can also carry diseases, which can contracted by humans (zoonoses).  Further, non-indigenous, or non-native species can become established in our environments, upsetting delicate ecosystems and may even lead to the extinction of our native species.  Reptiles may even carry disease that could potentially affect us as an agent, either through a natural “terrorism” or bioterrorism, carrying a disease that could affect humans or have a significant affect on our supply of beef. 

The current system, permitting several legal avenues for prosecutors to pursue when charging those involved in the illegal trade of reptiles appears to be in place, at least structurally.  Through more local regulation and education, the current legal net could be significantly tightened to drastically reduce the number of reptiles entering and exiting our borders.  More severe punishments and fines, i.e. making examples of those who break the law, on all levels - from the importer/exporter, to the courier, to the ultimate owner, should further decrease the number of illegal reptiles to pass through our borders.  Sadly, the fact remains that as long as the demand is high and buyers are willing to purchase a wild-caught reptile, the trade will surely continue.  Educating the public on laws and ecology may stifle some of this demand.  By attacking both ends of the trade, the supply and demand, with a simultaneous attack on the middle through stricter regulation at the state or locality level regarding keeping and selling reptiles, the goal might more readily be reached.  

 

Top of Page

Overview of Legal Issues Surrounding the Trade in Wild-Caught Reptiles
James M. Green

 

Reptiles Are Animals 

Reptiles are animals, as are amphibians. Physiologically, they are similar and are sometimes collectively called “herpetofauna.” All of the excepted scientific classification systems regard reptiles as such. Under the two most common classification systems, reptiles are either grouped as the Class Reptilia or the Class Diapsida under the Kingdom Animalia, meaning “animals”. Moreover, under most legal definitions, reptiles are considered to be animals as well. For example, Connecticut defines an animal as including “birds, quadrupeds, reptiles and amphibians.” Con. Gen. Stat. §26-1(1) (2004). Wisconsin is equally specific: "’Animal’ includes every living: (a) Warm-blooded creature, except a human being; (b) Reptile; or (c) Amphibian.” Wis. Stat. §951.01 (2004). Florida, albeit in an unflattering way, also defines “animal” to include reptiles as “the word ‘animal’ shall be held to include every living dumb creature.” Fla. Stat. §828.02 (2005). An unsettling discrepancy lies in the Federal Government’s Animal Welfare Act. 7 U.S.C. §§2131 et seq. There, the “term ‘animal’ means any live or dead dog, cat, monkey (nonhuman primate mammal), guinea pig, hamster, rabbit, or such other warm-blooded animal, as the Secretary may determine is being used, or is intended for use, for research, testing, experimentation, or exhibition purposes, or as a pet;” but excludes birds, mice, rats, horses and farm animals. 7 U.S.C. §2132(g). Conspicuously absent from the list are fish, amphibians and reptiles. Id. 

Unfortunately, many people, unaware of the backings from science and the law, do not consider reptiles to be animals. In his article entitled “Herpetofauna Keeping By Secondary School Students: Causes For Concern”, David Bride complied the results of some alarming graduate studies that currently remain unpublished. See http://www.psyeta.org/sa/sa6.1/bride.html. His compilation refers to a study by Martin and Nicholls (Martin, D. & Nicholls, M. (1993). The importance of children's provenance in the understanding of "animal" - a comparison of town and village primary school children in Kent. Christ Church College, Canterbury: Ecology Research Group) of 400 five- to eleven-year-olds found between 10-40% of those surveyed did not recognize either snakes or frogs as animals. Similarly, Tinkler (Tinkler, D. (1993) Zoo visitors' perceptions of animals - and the short-term effect of a zoo visit upon them. Unpublished M.S. dissertation. University of Kent at Canterbury, DICE) recorded 60% of 150 adult zoo visitors failed to classify a lizard as an animal. From his investigation into unpublished studies, Bride hypothesized that this may be due to a confusion of term "mammal" with "animal." He recently found that of 228 respondents to a questionnaire about wildlife, at least 25% appeared to confuse the two. Bride found this view, that "animal" equals "mammal," to be interesting as it gives an entirely new perspective to what many people's interpretations of such concepts as "animal protection," "animal welfare," and "animal rights" may entail. See http://www.psyeta.org/sa/sa6.1/bride.html. Knowledge of what a reptile actually is may go far in soliciting the sympathy of the public.  

Physiology 

A very common myth is that reptiles are “cold-blooded.” In addition to describing a general temperature of reptilian blood, the term also entails the negative connotations of evil and lifelessness. To be sure, in the Biblical story of Adam and Eve, it was a serpent that deceived mankind. However, reptiles are not “cold-blooded.” On occasion, they are quite the contrary and can even be “hot-blooded.” This gradation results in reptiles being “poikilothermic.” Poikilotherms have a body temperature that is variable with environmental conditions. If the ambient temperature is warm or even hot, that leads to a reptile having warm or hot blood. Another physiological term that accurately depicts reptiles is “ectothemy.” Ectotherms control the uptake of heat from the environment as a way to control internal body temperature. Reptiles are both poikilothermic and ectothemic, but are not cold-blooded. Moreover, some larger reptiles, such as large crocodilians, sea turtles and large monitor lizards approach a level of homeothermy. That is, their temperature does not fluctuate as much based upon the environment. This results from a physiology process known as gigantothermy, where a very large animal will maintain a constant body temperature with little input from the environment.  

Another popular assumption is that since reptiles are “cold-blooded,” they therefore feel little or no pain. In fact, they have little physiological control over their internal body temperature and are instead almost completely reliant on external heat sources to provide them with enough warmth for their natural activities and for metabolic processes to operate. This makes these animals extremely sensitive even to subtle changes in temperature and humidity in their captive environment. 

Added to the problems arising from their “cold-blooded” reputation, reptiles lack the repertoire of facial expressions and vocalizations that would alert keepers to their pain and distress. A sick, hurt, or chronically stressed reptile will typically suffer in silence. The suffering will often be far more prolonged than that experienced by mammals, due to reptiles' slow metabolic rate. Blood loss and the healing of injuries are both relatively slow, as are the consequent risk of infection and further complications. 

Most reptiles have a preferred optimum temperature zone, a zone of temperature that they try to maintain while performing daily activities. Their entire physiology, including their immune defense mechanism, is temperature dependent and operates optimally at this optimal zone. Reptiles in captivity often are maintained at suboptimal temperatures, which results in a compromised immune system. Such animals are subject to infection by a great variety of secondary invaders, including the gram-negative microorganisms commonly isolated from their oral cavity. A reptile that is kept at its preferred optimum temperature (with all other environmental conditions being ideal) and receives proper nutrition is often a healthy reptile. For a more complete discussion of reptile physiology, see 18 Carl Gans & David Crews, Biology of the Reptilia, Physiology E, (1991). The cumulative effect of these common misconceptions may play a large factor in the cruel treatment and neglect of reptiles in captivity. 

 

Top of Page